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Spectral evolution equations are used to perform numerical studies of nonlinear surface acoustic
waves in the(111) plane of several nonpiezoelectric cubic crystals. Nonlinearity matrix elements
which describe the coupling of harmonic interactions are used to characterize velocity waveform
distortion. In contrast to isotropic solids and tf@01) plane of cubic crystals, the nonlinearity
matrix elements usually cannot be written in a real-valued form. As a result, the harmonic
components are not necessarily in phase, and dramatic variations in waveforms and propagation
curves can be observed. Simulations are performed for initially monofrequency surface waves. In
some directions the waveforms distort in a manner similar to nonlinear Rayleigh waves, while in
other directions the velocity waveforms distort asymmetrically and the formation of shocks and
cusped peaks is less distinct. In some cases, oscillations occur near the shocks and peaks because of
phase differences between harmonics. A mathematical transformation based on the phase of the
matrix elements is shown to provide a reasonable approximation of asymmetric waveform distortion
in cases where the matrix elements have similar phase20@8 Acoustical Society of America.
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I. INTRODUCTION distortion without solving the full system of nonlinear spec-

In a previous papérthe authors used spectral evolution tral evolution equations for every case.

equation$to investigate the nonlinear propagation of surface

acouspc wa\_/e$SAWs) in the (001) surface cut of nonpiezo- Il NUMERICAL RESULTS
electric, cubic crystals. The present paper extends the analy-

sis to nonlinear SAWSs in thél11) surface cut. Results are A. Linear effects

presented for eight different crystal&Cl, NaCl, Srf, A plane surface wave with wave numbeis assumed to
BaF,, Si, Ge, Ni, and Clover the full range of propagation propagate in the direction along the surface of an aniso-
directions. In addition to the general study of these crystalsygpic half-space<0. The displacement components of the

detailed studies are presented for the cases of silicon anghearized equations of motion can be written in the form
potassium chloride in th€111) surface cut. In the case of [Eq. (22) in Ref. 2|

silicon, some of the features described here have been cor-
roborated by previously reported measureménts.
For isotropic media, the nonlinearity matrix in the spec-

tral evolution equations has proven to be convenient both to ) ) ) 9
interpret the nature of the spectral interactfbasd to com- Wherej=x.y,z, cis the small-signal SAW speetf” and

pute the shock formation distantén crystalline media, the ;" are the eigenvalues and eigenvectors, respectively, of the
nonlinearity matrix is especially useful for explaining the S€cular equation, an@ are coefficients which allow the
different types of waveform distortion that are possible as £tress-free boundary conditions to be satisfied. The param-
result of the reduced symmetry. Unlike in previous theoriesttersc, 1, o, and C, are determined using standard
for isotropic medi& and for the (001) plane of cubic techniques,
crystalst the nonlinearity matrix elements in tti#11) plane The SAW speedt as a function of the propagation di-
cannot usually be written in real-valued form. In particular, rection in selected materials is shown in Fig. 1. These curves
the phase of the nonlinearity matrix elements plays an imWere computed using the same data as in Ref. 1. The direc-
portant role in the resulting waveform distortion. A math- tion of propagation is measured by the angldrom the
ematical transformation is presented which gives reasonabl12) direction. The SAW speeds for each material are
accurate results for the distortion in cases where the phasesaled by the characteristic speegs= (c44/p)*% wherec;;
of the first few nonlinearity matrix elements are similar. are the second-order elastic constants in Voigt notatiorpand
From this approach, a graphical table of various types ofs the density. The SAW speed is periodic every=60°
distortion can be constructed to estimate the nature of thend symmetric abou#=30°. In most case&nd for all the
cases shown herethe speeds group by anisotropy ratjo
dCurrent address: Department of Physics, University of Windsor,:2044/(C11_C12)’ with materials possessing lower aniso-
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spondingly constant SAW speed for all directions. For all
materials, the direction=0°, §=30°, andd=60° are pure
modes, i.e., the wave vector is parallel to the direction of
power flow. As9— 30°, the wave speed of the SAW mode
tends to approackbut does not equathe speed of one of
the quasitransverse bulk wave modes, and the depth penetra-
tion penetration of the SAW mode tends to increasmlike
in the (001) plane the modes do not converge, and pseudo-
\/'7/— surface wave modes do not exist in the directtbn30°.
SrF Mm=0.803 While the wave speed has a sixfold periodicity in the
el (111) plane, other parameters of the linearized SAW equa-
BaFp m-1.02 ] tions have only a threefold periodicityFor example, the
eigenvalued$ have only a threefold symmetry. Figure 2
shows the real and imaginary partslfﬁ for KCI. (Compare
) with Fig. 16 in Ref. 7, which shows only 8<30°.) One
08 \S'":j>/’ also finds thatl | and|CSa(S)| exhibit a sixfold periodicity,
while arg[l(s)] and ardeSa(S)] maintain threefold periodicity.
Because the nonllnearlty matrix is a function 4P and

Ge N=1.66 Csa¥, this result also has implications for the periodicity of
nonlinear effects, as discussed below.

1.1
KC! M=0.373

NaCl M=0.705

clc ref

0.7
Ni N=2.60
B. Nonlinear effects
0.6 Cun=3.20 . Because the nonlinear theory used here has been dis-
cussed at length elsewhérenly the essential equations are
. . . . summarized. The coupled nonlinear evolution equations for
0 10 20 30 40 50 60 the surface acoustic wavéwithout absorptioh aré
0 [deg] dUn nw E | 9
FIG. 1. SAW speed as a function of propagation direction in(114) plane dx  2pc? sgr( M) Sim(—nV V. 2

of selected materials. The SAW speed of each material is measured relative ) ) )
to o= (C4a/p)Y? and the angle gives the direction of the wave vector Whereuv,, is the spectral amplitude of theth harmonic,w

relative to(112). The wave speeds are periodic everg=60°. =kc is the angular frequency, arfg,, is the nonlinearity

L e SRR PRPPREE e i FIG. 2. Dependence of the eigenvalu&® on the di-
im |(33) rection of propagation for SAWSs in th@11) plane of
KCI (solid, long dashed, and short dashed lines<or
r T =1,2,3, respectively The figure is plotted such that it
02 - can be directly compared to Fig. 16 in Ref. 7, which
only shows 0% #<30°.
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FIG. 3. Dependence of nonlinearity matrix elements on direction of propagation ii1feplane for selected materials. The solid, long dashed, and short

dashed lines correspond &, S;,, and 313, respectively. The magnitud¢§m| of the matrix elements are plotted in the first and third rows, while the
corresponding phasef,,, are plotted in the second and fourth rows.

matrix. The matrix elemeng,,, describes generation of the that for the cases described in the present article, effects of
nth harmonic due to interaction of théh andmth harmon-  mode coupling are negligible in most propagation directions
ics. The velocity waveforms at the surface=(0) are com-  for realistic wave amplitudes. Exceptions may include propa-

puted from the spectral amplitudes'by gation directions in the region neér 0° in Ni and Cu; care
should be exercised in applying the aforementioned theory in
vj(x,r):2 Un(x)||3j|ei¢j sgng-inw7 ©) these cases. A thorough analysis of this matter will be dis-
n

cussed in a future article.
wherej =x,y,z, Bj=|Bj| exp (¢;)=Csa{’ are determined by
solving the linearized equations of motion, andt—x/cis 1. General study
the retarded time. It is convenient to define a dimensionless

nonlinearity matrit Figure 3 displays the nonlinearity matrix elements for

A KCI, NaCl, Srk, Bak, Si, Ge, Ni, and Cu. These are the
Sim=—Sm/Caa- (4) same materials considered in Ref. 1 for 881) surface cut.
. . . Plots for materials withp<<1 or »~1 are given in the top
In all cases, the figures throughout this paper use the nonllr{Wo rows, and for materials withy>1 in the bottom two

earity matrix defined by Eq4). .

It is possible that nonlinear coupling between surface OV Because the m_atrlx elements are usually complgx-
wave and bulk wave modes may occur in propagation direc\-lalued’ tyvo plots are given f(?r eaACh mater|al. 'I:he top plotin
tions where the wave speeds in these modes are close to ofgch pair shows the magnitudesy | (solid), |Sy (long
another. The theoretical model does not account for couplingashed and [S;3 (short dashed The inequalities|S,|
with bulk waves, and this matter was discussed previously in>|S;,/>|S;4 hold in most directions within the crystals

connection with Scholte wavésCalculations have revealed shown. In these cases, the primary effect of a change in
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magnitude over a range of directions is to change the length
scale over which the nonlinear distortion occurs. Exceptions
occur when one or more of the matrix elements is Zz@m
when one or more of the above inequalities is reversed. The
latter case occurs neéle= 30° for KCI, NaCl, Si, and Gésee
Sec. II B 2 for the effect on the waveforms in)SThe matrix
elements tend to decrease in magnitud@-as30°; this trend
coincides with the increased depth penetration of the SAW
described in Sec. Il A. In all cases, the magnitufigg| are
periodic everyA §=60° and symmetric abouwt=30°.

The phasey,,, of the matrix elemen$,,, is defined such

that S;,=|Sm| exp (). The bottom plot in each pair
shows the phaseg;; (solid), ¢, (long dashel and i3 3n/2
(short dashed As will be shown in subsequent examples, the
primary effect of the phase of the matrix elements is to
change the shapes of the various velocity waveform compo-
nents. Note that the nonlinearity matrix elements are always
real-valued (,,=0 or ¢,,,= = 7) at 6=30° because of the
crystalline symmetry in this direction. In contrast to the mag-
nitudes, the phaseg,, are periodic everyA 6=120° and
symmetric abouty=60°.

The nonlinearity matrix elements are functions of the
parameter$y’ andCge!® of the linearized probleriFor the
crystals showrfall in the m3m point group, the magnitudes
|Sml, 15|, and |Csaj(5)| have sixfold periodicity in the 0 15 30 45 60
plane, while the phasdgs,|, ardl{], and ar§Ci!®] have
only threefold periodicity. Thus the symmetry properties of 6 [deg]
the nonlinearity matrix elements are influenced by the sym¢ - , Nonlinearity matrix element8,;, &1, andS,s for Siin the (111)

metry properties of these linear parameters. plane as a function of direction for 829<60°. The circled directions are
discussed in detail in the text. Note that the vertical scale on the phase graph
is changed tor/2< ,,<3m/2 as compared to Fig. 3.

|§Iml

Vi Irad]
a

2. Detailed study of silicon

Here we consider nonlinear SAWSs in crystalline silicon
and show some of the various types of waveform distortiorcharacteristic length scale for nonlinear distorti@pproxi-
which are possible. Figure @xpanded from Fig. 3 with the mately equal to the shock formation distance, if shocks
vertical scale of the phase changed #@2<yn<37/2)  torm)® andu, is a characteristic velocity magnitude.
shows the magnitude and phase of the three nonlinearity ma- 9=0°: This direction provides the first example of

trix elementsS,, (solid), Sy, (long dashel) and Sy5 (short  5qymmetric distortion. While the velocity waveforms are

dashed While 6=0°, 6=30°, §=60" are pure mode direc- o\ etric apouts7=0 atX=0, the distortion is asymmet-

tions, none is a “Rayleigh-type” modeln the #=0° and ; ~ . . . .
0=60° cases, while the displacement is confined to the sagrlC atX=1 andX=2, unlike both nonlinear Rayleigh waves

ittal plane, the phase difference between the longitudinal an&nd .nonlmear _SAWS in th¢001) plane. For example, a )

vertical components is not 90°. Hence the major axis of thé1onlinear Rayleigh wave forms a cusped sawtooth wave with

initial surface displacement ellipse is not perpendicular to thé compression or rarefaction shock in #ewaveform and a

surface. In thed=30° case, the displacement is not confinedU-shaped wave with a cusped peak in tg waveform.

to the sagittal plane. However, in this direction th&/, waveform distorts into a
Figure 5 displays the velocity waveforms for the direc- U-shaped wave with an asymmetrically cusped peak, while

tions #=0°, 6=30°, andfd=60° marked by small circles in the Vv, waveform distorts into a sawtoothlike wave with

Fig. 4. These waveforms were calculated under the samgeaks advancing and troughs receding with respect to the
conditions as described in Ref. 1 and are selected to show thgi~qed time frame. Measurements of finite-amplitude
types and diversity of distortion in this cut. The columnsSAWS at6=0°
from left to right give the dimensionless longitudinal,j, . .

) of these differences is the complex-valued nature of the non-
transverse Vy), and vertical {,) components of the veloc-

ity, respectively. In each direction, the waveforms are nor_lmeqnty matnx elements. Because a full d|§cu53|on of the
malized such that aX=0 we have|V, |+ |V, |2+ |V,[2=1 relationship between the phase of the matrix elements and
X y z ’

and hence the absolute magnitudes between directiorige resulting waveform distortion is given in Sec. Ill, further
should not be compared. The velocity waveforms show reanalysis of these waveforms is delayed until Sec. IV.

sults at locationsX=x/xq=0 (short dashed X=1 (long #=30°: In this direction, the nonlinearity matrix ele-
dashedl and X=2 (solid), where xo=pc*4|S,;;Jwv, is @ ments are all real-valued. As a result, the distortion is

in Si corroborate these resuftdhe source
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FIG. 5. Velocity waveforms in selected directions for propagation iniié) plane of Si. The velocity components are normalized such that initial amplitude
satisfieslvxlz-!—|Vy\2+|VZ|2=1 in each propagation direction. The short dashed, long dashed, and solid lines correspond to propagation atddisBances
X=1, andX=2, respectively.

more similar to nonlinear SAWs in certain directions of the nonlinear propagation is different f@mf] and[HZ] in the
(001) plane! BecausdS,| is less thar{S;,| and|S;4, en-  (111) plane of crystalline silicon, and the differences in the

ergy is more efficiently transferred from the fundamental todistortion are consistent with the results shown here.
third and higher harmonics than it is to the second harmonic.

As a resu_lt of the increased energy in the higher hgrmonicsg_ Detailed study of potassium chioride
the velocity waveforms show sharp cusps. In addition, the ] ) )
matrix elements are negative/(,= =), and so a rarefaction We consider here nonlinear SAWs in tiL1) plane of
shock forms in the/, waveform. KCI. The magnitude and phase & (solid), S;, (long
6=60°: While the nonlinearity matrix elements in this dasheti and S;; (short dashedare shown in Fig. 6ex-
direction have the same magnitude as those9fe0°, their  panded from Fig. 3 for 0% 4=<30° and with the vertical
phases have the opposite sign. As a result, the wavefornscale of the phase changed te@,,,<37/2). Like Si, the
distort into entirely different shapes. Thg waveform dis-  nonlinearity matrix elements have the largest magnitude at
torts into an inverted U-shaped wave with an asymmetricallyg=0°. Unlike Si, the phaseg,, change significantly from
cusped trough, while the, waveform distorts into an asym- 6=0° to 5°. Here again both th&=0° andd=30° directions
metric sawtoothlike wave with peaks receding and troughsre pure mode directions, but neither is a “Rayleigh-type”
advancing. Because the nonlinear properties are periodic evaode for the same reasons as in Si. One marked difference
ery A9=120°, propagation fof=60° is the same as fa#  with Si which occurs even at linear order is that the trans-
=180°. Recently reported measuremértave shown that verse linear amplitude factoB, have phasesp, that are
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Wiy [rad]

FIG. 6. Nonlinearity matrix elements,;, S;,, andS;; for KCl in the (111)
plane as a function of direction for 82<30°. The circled directions are

20
8 [deg]

closer tosr than to 0. This change alone results in transverse
velocity waveforms that are significantly different.

Figures 7 and 8 display the velocity waveforms and har-
monic propagation curves, respectively, for the directiéns
=0°, #=20°, andfd=28° marked by small circles in Fig. 6.
These directions are chosen because they have types of
waveform distortion not shown in Fig. 5. Note that the ver-
tical axis for all the waveforms is shifted as compared to Fig.
5 such that e w7<27. The harmonic propagation curves
show the spectral components to Vs as a function of the
dimensionless propagation distance. Because the spectral
amplitudes are complex-valued, the harmonic propagation
curves show both the magnitudésft column and phases
(right column of the harmonics. Note that the phases shown
are relative to linear theory.

#=0°: This direction shows a different type of asym-
metric distortion than seen in Si. Thg waveform forms an
asymmetrically cusped sawtoothlike wave with a rarefaction
shock and with the negative cusped peak larger in magnitude
than the positive cusped peak. Thie waveform forms a
U-shaped wave with an asymmetrically cusped peak. The
harmonic magnitude curves in Fig. 8 are typical of nonlinear
SAWSs in isotropic solids, and the harmonic phase curves
show relatively little variation during propagation.

0=20°: Observe that the waveforms in this direction
distort very differently from those in th&@=0° direction.

The different shapes result because the dominant nonlinear-
ity matrix elements are clustered ne@P, instead of neatr

discussed in detail in the text. Note that the vertical scale on the phase graghc€ at 6=0° (see Fig. 6. Moreover, the phases gy, ¢15,
is changed to & ¢,,,<3w/2 as compared to Fig. 3.

and ¢,5 are more widely spaced a&#=20° than atf=0°.

FIG. 7. Velocity waveforms in selected directions of
propagation in thg(111) plane of KCI. The velocity
components are normalized such that initial amplitude
satisfieq V,|2+|V,|?+|V,|?=1 in each propagation di-
rection. The short dashed, long dashed, and solid lines

correspond to propagation at distanées0, X=1, and
X=2, respectively.
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Harmonic Magnitudes Harmonic Phases harmonics having dissimilar phases, which in turn are related
! 9= 0° T 6=0° to the complex-valued nature of the matrix elements. The
next section further investigates the relationship between the
nonlinearity matrix elements and waveform distortion.

IIl. COMPLEX-VALUED NONLINEARITY MATRIX
ELEMENTS AND WAVEFORM DISTORTION

Only the concepts of positive and negative nonlinearity
are necessary to describe nonlinear SAWs in (B8l
plane! Examples of waves with a positive coefficient of non-
linearity 8 include acoustic waves in fluids, longitudinal bulk
waves in most isotropic solids, and SAWs in stéand the
direction 26° from(100) in Si.! In these waves, the peaks of
the longitudinal velocity waveforms advance in a retarded
time frame moving at the linear wave speed, while the
troughs recede. Examples of waves wik 0 include SAWSs
in fused quart? and SAWs propagating in the directions 0°
and 35° from(100) in the (001) plane of Si* In these waves,
the peaks of the longitudinal velocity waveforms recede in
the retarded time while the troughs advance. However, the
situation is more complicated for the most general case of a
SAW in an anisotropic medium. As shown in Ref. 1, an
appropriate coefficient of nonlinearity for SAWs in a crystal
is
FIG. 8. Harmonic propagation curves for selected directions of propagation
in the (111) plane of KCI. The spectral components (solid), V, (long ﬁ=4c44§11/pc2, (5)
dashedl V3, (short dashed V, (dotted, andVs (dot-dasheglare plotted as
a function of distance. The left column shows the spectral amplithdgs
l/;/]réi(l)eryt.he right column shows the spectral phases\gygelative to linear where the nonIineariFy matrix elemeég1= |”Sll| exp Q_¢11)

cannot usually be written in real-valued form. The interpre-
tation of Eq.(5) in terms of its effect on waveforms for

This separation causes the oscillations near the shocks agHuations other thamy;;=0 (B real and positiveand i,
peaks, as discussed further in Sec. IV. While these oscilla= = 7 (8 real and negatives not immediately obvious. The
tions are reminiscent of the kind seen in dispersive waves, PUrPose of this section is to suggest a way of thinking about
should be emphasized that there is no dispersion in this sy§0is issue.
tem. In contrast to th@=0° direction of KCI, Fig. 8 shows Ideally, one would like to be able to characterize the
that the magnitudes of the third, fourth, and fifth harmonicstyPe of waveform distortion by computing just a few param-
become comparable, while the phases are further separatBters. thereby avoiding the process of numerically integrating
and show larger variation as a function of distance except & System of nonlinear differential equations for every mate-
the fundamental frequency. rial, put, and direction. As shown in Ref. 1, the nonlinea_rity
9=28°: In this direction,|§11| is less than|§12| and  Mmatrix eIement; can serve as such parameter;, allowing a
reasonable estimate of the type of waveform distortion

Lsrl%é;';”t: tso ttr:]esazjno er?gscrt#%rr]elr]raSI'alEntirghY Ir?e:hﬁar-laCk thereof to be determined from plots of the first few
unas ! us conv . pidly '9 _elements. The ability to make the same type of estimate is
monics. As shown in Fig. 8, this results in a steeper declin

in the maanitude of the fundamental as compared to the re_esired here. The specific objective is to investigate in a
. ¢ gd' " in KCl and wal d pa b t% simplified manner how the phase of the nonlinearity matrix
vious two directions in » and eventual dominance by the_« .« e SAW solutions.

h|gh_er ha_rmomcs. However,_ unlike Sl,_ here the phases of the Towards this end, the matrix
nonlinearity elements are different. Figure 8 shows that the

harmonic phases are irregularly spaced and some harmonics

change their phase significantly as they propagate. The net Sim=Sime'” %™ (6)
result of these complicated interactions is the high-frequency
oscillation seen in the waveforms of Fig. 6. is introduced to represent a nonlinearity matrix constructed

These simulations show that a wide variety of waveformby applying a phase incremejt independent of andm, to
distortion can occur in nonlinear SAWs in thEll) plane as a given matrixS,,,. Given a solution for a material with
compared to nonlinear Rayleigh waves or nonlinear SAWSs imrmatrix S;,,, it is desired to relate that solution to the one
the (001) plane. Features like asymmetric distortion andobtained for a material with nonlinearity matrB{/’m. It is
high-frequency oscillations in the waveforms result from theconvenient, although not necessary, to consider the matrix
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S to be real. The main simplifying assumption is that there R R R B

exist propagation directions in some materials for which the vx(XvT):; va(X)(—i[Bysgnn)e "o, (13
phase of the nonlinearity matrix is nonzero yet independent

of the indiced andm. That Eq.(6) is a reasonable model of Now suppose there exists a hypothetical crystal with nonlin-
the phase dependgnce in some cases, at least fqr_ the first f%‘é{rity matrix eIementS‘/(n: "SIaneii//San and linear amplitude
matrix elements, is supported by Fig. 3..Spe0|f|cally, ON&actorsB, = |B,Je 2= —i|B,|. By Eq.(12), the longitudi-
observes thag,,= 1= i3 for all the materials showex- ) velocity waveform at the surface of the crystal is written

cept Srk) at 0°< #<15° and 45% §<60°. The purpose of i, terms of the spectral components of the Rayleigh wave as
introducing sgm in Eq. (6) is that S, must retain all the

symmetry properties required of the nonlinearity matrix. In

. . . . 4 — 14 i —inwgT
particular, the nonlinearity matrix elements have the symme-  Ux(%.7)= En: vh(X)(—i[By/sgnn)e""o", (14
try property

or, from Eqg.(11),
Simt-m=S{ (- mn- @ )
- i ofi B . _
\(/\;f)weren—IwLm. The sgm ensures that E(6) satisfies Eq. v;f’(x,q-)= |||3§|| zn: UE(X)e—ngnn(_i|B)F(€|Sgnn)eflnwor_
" X
For a nonlinearity matri)S‘ﬁ , the evolution of nonlinear (15

SAWSs is d ibed by E : :
s is described by Eqe2) Except for the factor o&™'¥59"" the summation is the lon-

dv,‘/{ n%w, " v v gitudinal velocity component of the Rayleigh wave. The
X 2pct Sy sgnIm) Sim )01 m» (8  prefactorB,|/|BY| adjusts for possible amplitude differences
between the linear solutions of the Rayleigh wave and the
where the notatiom,, designates that these spectral compo-saw in the crystal. Thus, given the linear amplitude factor
nents are the solutions associated with the m&ffx Now B and the phase of the nonlinearity matrix elements, the
substitute Eq(6) into Eq. (8) and multiply both sides by \ayeforms at the surface in the idealized crystal may be

el 5o, Let computed by changing the phase of the spectral components
vn:Urt]ﬂeiwsgnn, (9) of the nonlinear Rayleigh wave and reconstructing according
_ to Eq. (15).
and thus obtain The expression in Eq15) is only an approximation to
dv. n2w the actual waveform. Discrepancies occur because the non-
n 0 . . . . .
ax W sgnm)Sm— v ivm- (10 linearity matrix elements rarely possess identical phase and,
I+m=n

even if the phases of the elements are very similar, the mag-
The spectral components, in Eq. (10) are recognized as the nitudes of the elements may differ. Nevertheless, the overall
solutions for a material with nonlinearity matr$,,. There-  result can be qualitatively similar, especially in cases where
fore, the solutions ! for a material with nonlinearity matrix the dominant matrix elements have nearly the same phase.

S/ are related to the solutions, for a material with non- To gain some intuition about the example transformation
linearity matrix S, via Eq. (9): v¥=v,e '¥S9" given in Eq.(15), the dimensionless wave-
. forms
v¥=p e ¥sIn (11)
Y
. . T . v (X,’T)
The surface velocity component#’ in the x; direction for a Vi(x,7)= x

material with nonlinearity matri>8f’(n are reconstructed from B |U)"(/I(O,O)|

the spectral components using Eq.(3):

_ _ => vR(x)(—i sgnn)e ¥sIne=inwor  (16)

vl(x,7)= 2 vl(x)|Bj|e'®i s inwor, (12) n
n

~ are plotted in Fig. 9 for & ¢=<a. (An analogous figuré

For ease of notation, defirsy,= — Sfi/c44, following Eq.  can be constructed 7<$<0.) The Rayleigh waveforms
4. (¢=0) are calculated for steel. The third-order elastic con-

Consider an example of the above procedure to relatgtants for the simulations are taken from measurements of
the phase of the nonlinearity matrix elements to the correSteel 60 C2H2A” listed in the review by Zarembo and
sponding type of waveform distortion. Take the well-known Krasil'nikov,*® and they are the same as those used in simu-
waveform distortion for a nonlinear Rayleigh wave with |ations by Zabolotskayaand Shullet al!® The simulations
positive nonlinearity coefficieng as a reference case, with were performed under conditions identical to the crystal
spectrumuy, corresponding real-valued nonlinearity matrix simulations described in Ref. 1. Each plot contains the di-
elementsS? | and BR=|BRje"™2=—i|BR| (this conven- mensionless longitudinal velocity waveforna€(X) at loca-
tion for B; is chosen to be consistent with theory for nonlin- tions X=0 (short dashed X=1 (long dashef) and X=2
ear Rayleigh waves in isotropic solfisFor simplicity, we  (solid).
consider only the longitudinal velocity waveforms. The lon- Several observations can be made about this table of
gitudinal velocity waveform for the nonlinear Rayleigh wave graphs. In the limiting cases @f=0 and¢= =, the wave-
is given by forms distort positively and negatively, respectively. When
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L ¥=3rn/8

b W=3rn/4

I V=71/8

FIG. 9. Transformed waveforms corresponding to the
various phase angles<Oy/<  of the transformed non-
linearity matrix element&, =S,e'” 9" " wheren=|
+m. Each graph plots the dimensionless longitudinal

velocity waveforms VY(x,7)=v¥(x,7)/|v¥(0,0)| for
waveforms at distanceX=0 (short dashed X=1

(long dashef X=2 (solid).

I W=x

S

2n

Y= ml2, the waveform looks like the vertical velocity com- 1IV. COMPARISON OF APPROXIMATE AND FULL
ponent of a negatively distorting Rayleigh wave. This simi-SOLUTION METHODS
larity occurs because, from E¢L1),

U:]ﬂ= 77/2: v neii(Sgnn)ﬂ-lzz ( - | Sgnn)vn )

17

where the coefficient-i sgnn is recognized as a Hilbert
transform expressed in the frequency donféifihe appear-
ance of the Hilbert transform in Eq17) is not unexpected

because the longitudinal and vertical components of a Ray-
leigh wave are related in precisely this way. The remainin
plots show the expected waveform shapes for intermediaté"

Figure 10 shows comparisons of the transformed solu-
tions based on nonlinear Rayleigh waves in steel and the
solutions for the distortion of longitudinal waveforms in sev-
eral real crystals. The transformed solutions based on Ray-
leigh waves are constructed via E@2) in three steps. First,
the linear amplitude factoB, and nonlinearity matrix ele-

entS,; are computed for each crystal. Second, the trans-
mationv? in Eq. (11) is applied to the spectral compo-

values of ¢y and, therefore, other cases of complex—valueonemsvrF1e of the nonlinear Rayleigh waves usigg,, and the
nonlinearity matrix elements.
This approximate approach is not limited to longitudinal SOUrce begin in the same place on the horizontal scale. Third,
velocity waveforms. If the phases; of the linear amplitude
factors B; are known, then the corresponding approximateamplitude of the undistorted waveform ¥t=0 is equal in
waveform distortion in the vertical and transverse directiongnagnitude to the waveform in the corresponding crystal. The
can also be determined. Léf,,q= #m be the phase of all
the matrix elements. In cases where the phases are not all thénile the right column gives the simulations using the full
same, choose a representative element, typically. The
appropriate values o, and i, Used to characterize the
transverse and vertical velocity waveforms are givetf by

Uyan= b1~ ot wlong1
Pver= P1— 3t ‘plong-

(18a

(18b)

waveforms are translated so that all the sine waves at the

the resulting waveforms are scaled usjig| such that the

left column gives the transformed Rayleigh wave solutions,

theory (reproduced from Figs. 5 and).7The rows present
comparisons for waveforms propagating in the directiéns
=0° for Si andd=0°, §=20°, andd=28° for KCI.

The top two rows show cases for which the nonlinearity
elementsS;;, S;,, andS;; have similar, but not the same,
phase. Fop¥=0° in Si the characteristic phase was chosen as
Yiong= ¥11~0.597 (see Fig. 4 Thus for this case the wave-

In other words, these are the phases that are appropriate fig'm is expected to be between the shapes givenyby
use with Eq.(12) and Fig. 9(and its analog for—7<y
<0) to determine the approximate shape of the wavefornphase for #=0° in KCI was chosen to bepong= /11
distortion. Calculated phase values using Ed®) for the
directions and crystals discussed in this paper are given itions reproduce the general shape of the distortion although

Ref. 12.
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=7/2 and ¢=5#/8 in Fig. 9. Similarly, the characteristic
=1.17r (see Fig. 6. The transformed Rayleigh wave solu-

not all the details. For example, in the Si waveform the shock
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3 3 of Ni, where 11> ¢1,> 15 (See Fig. 3, correspondingly
y=0.59n Si(111) 6=0° show that oscillations appear to the left of the peaks and
i shocks in those wavefornté At §=28° in KCI, the charac-

teristic phase for the transformed waveforms was chosen to
be ong= #11=0.47m. However, the approximate method
does not reproduce the features seen in the full simulation.
This is not unexpected because, as seen in FigSg|
<|5,J <84, and thusS;; does not dominate the distortion
process. In additionys; differs significantly fromy, and
1310 this direction. Under these circumstances, the approxi-
mate method is not likely to reproduce all the salient features
of the distortion. However, this determination can be made
directly by examining a plot of the nonlinearity matrix ele-
ments.

Finally, the methods and results described in this paper
are not limited to nonlinear SAWSs in th@11) surface cut.

3 v=0.39n 3 KCl (111) 8=20° Additional studies of a variety of cubic crystals in tfELO
2 2 surface cut have been perform&dihile the waveform dis-
tortion in this cut is similar to that in th€001) plane for
2r1 S crystals in them3m point symmetry groufs (all the crystals
shown in this paper crystals in them3 point group show
0 w 0 S — distortion like in the(111) plane. Examples of crystals in the
-1 1 . m3 point group are the hydrous alunfAl(SO,),-12H,0,
3 3 whereX=_Cs, K, and NH. The use of complex-valued non-
y=0.47n KCI(111) 6=28° linearity matrix elements to characterize waveform distortion

is also expected to be applicable to surface waves in materi-
als with other crystalline symmetries besides cubic.

V. SUMMARY

FIG. 10. Comparison of transformed Rayleigh wave solutitefs column This paper examines the propagation of nonlinear SAWs
and simulations of nonlinear SAWSs in the directién-0° for Si and the  in the (111) surface cut for a variety of cubic crystals. The
directions¢=0°, §=20°, and=28° for KCl (right column. The top two  SAWs in this plane differ from those in t{€01) surface cut
rows correspond to cases of nonlinearity matrix elements with similar phas . . .

while the bottom two rows show cases where the matrix elements haveleh ,that ,the nonlinearity maitrix elementsl CannOt_ usually be
dissimilar phase. written in real-valued form. The nonlinearity matrix elements

have sixfold symmetry in magnitude but only threefold sym-

is steeper than in the transformed waveform, and in the KCI'€lry in phase. In most directions, initially sinusoidal wave-
waveform the cusping before the shock does not appear ifPrms distort asymmetrically and, in some cases, the dissimi-
the transformed waveform. Nevertheless, the similarities b2’ Phases of the nonlinearity matrix elements result in
tween the waveforms are striking. In cases like these, th@scillations forming in the vicinity of the shocks and peaks

nonlinearity matrix elements and plots like Fig. 9 can peOf the velocity waveforms. Detailed analysis is provided for

used to immediately characterize the nature of the waveforn®l @nd KCI. A simple mathematical transformation is intro-
distortion. duced to provide a graphical interpretation of the phase in-

In contrast, the bottom two rows show several casedormation contained in the nonlinearity matrix elements and
where the phases of the nonlinearity matrix elements are led§iear amplitude factors. Comparisons are made between
similar. At 8=20° in KCI, the characteristic phase for the waveforms approximated by this method and those generated
approximate method was chosen to #ig,g= 1;=0.397. with the full simulation. The agreement is shown to be best
In this case, the approximately transformed waveforms davhen most of the nonlinearity matrix elements of the crystals
not reproduce the extra oscillations that result from the thd1ave the same or approximately the same phase. By this
phase differences introduced between harmonics during trPpProach, plots of the nonlinearity matrix elements as a func-
harmonic generation process. However, the occurrence of tHion of direction can be used to characterize the types of
oscillations to the right of the Cusped peak can be inferredTarmOI'liC generation and waveform distortion in some direc-
from the relationy,,< /1,< ¢/15. As higher harmonics form, tions. The analysis provided here is applicable to other crys-
their phase relative to the fundamental is increased. Additals and surface cuts as well, such as in(thi) surface cut
tional calculations of velocity waveforms in thi#11) plane  of cubic crystals in then3 point symmetry group.
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