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Spectral evolution equations are used to perform numerical studies of nonlinear surface acoustic
waves in the~111! plane of several nonpiezoelectric cubic crystals. Nonlinearity matrix elements
which describe the coupling of harmonic interactions are used to characterize velocity waveform
distortion. In contrast to isotropic solids and the~001! plane of cubic crystals, the nonlinearity
matrix elements usually cannot be written in a real-valued form. As a result, the harmonic
components are not necessarily in phase, and dramatic variations in waveforms and propagation
curves can be observed. Simulations are performed for initially monofrequency surface waves. In
some directions the waveforms distort in a manner similar to nonlinear Rayleigh waves, while in
other directions the velocity waveforms distort asymmetrically and the formation of shocks and
cusped peaks is less distinct. In some cases, oscillations occur near the shocks and peaks because of
phase differences between harmonics. A mathematical transformation based on the phase of the
matrix elements is shown to provide a reasonable approximation of asymmetric waveform distortion
in cases where the matrix elements have similar phase. ©2003 Acoustical Society of America.
@DOI: 10.1121/1.1529170#
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I. INTRODUCTION

In a previous paper,1 the authors used spectral evolutio
equations2 to investigate the nonlinear propagation of surfa
acoustic waves~SAWs! in the ~001! surface cut of nonpiezo
electric, cubic crystals. The present paper extends the an
sis to nonlinear SAWs in the~111! surface cut. Results ar
presented for eight different crystals~KCl, NaCl, SrF2 ,
BaF2 , Si, Ge, Ni, and Cu! over the full range of propagatio
directions. In addition to the general study of these cryst
detailed studies are presented for the cases of silicon
potassium chloride in the~111! surface cut. In the case o
silicon, some of the features described here have been
roborated by previously reported measurements.3

For isotropic media, the nonlinearity matrix in the spe
tral evolution equations has proven to be convenient bot
interpret the nature of the spectral interactions4 and to com-
pute the shock formation distance.5 In crystalline media, the
nonlinearity matrix is especially useful for explaining th
different types of waveform distortion that are possible a
result of the reduced symmetry. Unlike in previous theor
for isotropic media6 and for the ~001! plane of cubic
crystals,1 the nonlinearity matrix elements in the~111! plane
cannot usually be written in real-valued form. In particul
the phase of the nonlinearity matrix elements plays an
portant role in the resulting waveform distortion. A mat
ematical transformation is presented which gives reason
accurate results for the distortion in cases where the ph
of the first few nonlinearity matrix elements are simila
From this approach, a graphical table of various types
distortion can be constructed to estimate the nature of

a!Current address: Department of Physics, University of Winds
401 Sunset Ave, Windsor, ON N9C 4E1, Canada. Electronic m
kumon@mailaps.org
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distortion without solving the full system of nonlinear spe
tral evolution equations for every case.

II. NUMERICAL RESULTS

A. Linear effects

A plane surface wave with wave numberk is assumed to
propagate in thex direction along the surface of an anis
tropic half-spacez<0. The displacement components of th
linearized equations of motion can be written in the fo
@Eq. ~22! in Ref. 2#

uj5(
s51

3

Csa j
~s! exp@ ikl 3

~s!#exp@ ik~x2ct!#, ~1!

where j 5x,y,z, c is the small-signal SAW speed,l 3
(s) and

a j
(s) are the eigenvalues and eigenvectors, respectively, o

secular equation, andCs are coefficients which allow the
stress-free boundary conditions to be satisfied. The par
eters c, l 3

(s) , a j
(s) , and Cs are determined using standa

techniques.7

The SAW speedc as a function of the propagation d
rection in selected materials is shown in Fig. 1. These cur
were computed using the same data as in Ref. 1. The d
tion of propagation is measured by the angleu from the

^112̄& direction. The SAW speeds for each material a
scaled by the characteristic speedscref5(c44/r)1/2, whereci j

are the second-order elastic constants in Voigt notation anr
is the density. The SAW speed is periodic everyDu560°
and symmetric aboutu530°. In most cases~and for all the
cases shown here!, the speeds group by anisotropy ratioh
52c44/(c112c12), with materials possessing lower anis
tropy ratios having higher relative SAW speeds. Materi
with h'1 indicate nearly isotropic media, with a corre

,
l:
1293293/11/$19.00 © 2003 Acoustical Society of America
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FIG. 1. SAW speed as a function of propagation direction in the~111! plane
of selected materials. The SAW speed of each material is measured re
to cref5(c44 /r)1/2, and the angleu gives the direction of the wave vecto

relative to^112̄&. The wave speeds are periodic everyDu560°.
1294 J. Acoust. Soc. Am., Vol. 113, No. 3, March 2003 R. E. K
spondingly constant SAW speed for all directions. For
materials, the directionsu50°, u530°, andu560° are pure
modes, i.e., the wave vector is parallel to the direction
power flow. Asu→30°, the wave speed of the SAW mod
tends to approach~but does not equal! the speed of one o
the quasitransverse bulk wave modes, and the depth pen
tion penetration of the SAW mode tends to increase.7 Unlike
in the ~001! plane the modes do not converge, and pseu
surface wave modes do not exist in the directionu530°.

While the wave speed has a sixfold periodicity in t
~111! plane, other parameters of the linearized SAW eq
tions have only a threefold periodicity.8 For example, the
eigenvaluesl 3

(s) have only a threefold symmetry. Figure
shows the real and imaginary parts ofl 3

(s) for KCl. ~Compare
with Fig. 16 in Ref. 7, which shows only 0°<u<30°.) One
also finds thatu l 3

(s)u anduCsa j
(s)u exhibit a sixfold periodicity,

while arg@l3
(s)# and arg@Csaj

(s)# maintain threefold periodicity.
Because the nonlinearity matrix is a function ofl 3

(s) and
Csa j

(s) , this result also has implications for the periodicity
nonlinear effects, as discussed below.

B. Nonlinear effects

Because the nonlinear theory used here has been
cussed at length elsewhere,2 only the essential equations a
summarized. The coupled nonlinear evolution equations
the surface acoustic waves~without absorption! are2

dvn

dx
5

n2v

2rc4 (
l 1m5n

sgn~ lm!Slm~2n!v lvm , ~2!

wherevn is the spectral amplitude of thenth harmonic,v
5kc is the angular frequency, andSlm is the nonlinearity

ive
t
h

FIG. 2. Dependence of the eigenvaluesl 3
(s) on the di-

rection of propagation for SAWs in the~111! plane of
KCl ~solid, long dashed, and short dashed lines fors
51,2,3, respectively!. The figure is plotted such that i
can be directly compared to Fig. 16 in Ref. 7, whic
only shows 0°<u<30°.
umon and M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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FIG. 3. Dependence of nonlinearity matrix elements on direction of propagation in the~111! plane for selected materials. The solid, long dashed, and s

dashed lines correspond toŜ11 , Ŝ12 , and Ŝ13 , respectively. The magnitudesuŜlmu of the matrix elements are plotted in the first and third rows, while
corresponding phasesc lm are plotted in the second and fourth rows.
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matrix. The matrix elementSlm describes generation of th
nth harmonic due to interaction of thel th andmth harmon-
ics. The velocity waveforms at the surface (z50) are com-
puted from the spectral amplitudes by1

v j~x,t!5(
n

vn~x!uBj ueif j sgnne2 invt, ~3!

wherej 5x,y,z, Bj5uBj u exp (ifj)5Csaj
(s) are determined by

solving the linearized equations of motion, andt5t2x/c is
the retarded time. It is convenient to define a dimension
nonlinearity matrix1

Ŝlm52Slm /c44. ~4!

In all cases, the figures throughout this paper use the non
earity matrix defined by Eq.~4!.

It is possible that nonlinear coupling between surfa
wave and bulk wave modes may occur in propagation dir
tions where the wave speeds in these modes are close to
another. The theoretical model does not account for coup
with bulk waves, and this matter was discussed previousl
connection with Scholte waves.9 Calculations have reveale
J. Acoust. Soc. Am., Vol. 113, No. 3, March 2003 R. E. Kumon a
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that for the cases described in the present article, effect
mode coupling are negligible in most propagation directio
for realistic wave amplitudes. Exceptions may include pro
gation directions in the region nearu50° in Ni and Cu; care
should be exercised in applying the aforementioned theor
these cases. A thorough analysis of this matter will be d
cussed in a future article.

1. General study

Figure 3 displays the nonlinearity matrix elements f
KCl, NaCl, SrF2 , BaF2 , Si, Ge, Ni, and Cu. These are th
same materials considered in Ref. 1 for the~001! surface cut.
Plots for materials withh,1 or h'1 are given in the top
two rows, and for materials withh.1 in the bottom two
rows. Because the matrix elements are usually comp
valued, two plots are given for each material. The top plo
each pair shows the magnitudesuŜ11u ~solid!, uŜ12u ~long
dashed!, and uŜ13u ~short dashed!. The inequalitiesuŜ11u
.uŜ12u.uŜ13u hold in most directions within the crystal
shown. In these cases, the primary effect of a change
1295nd M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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magnitude over a range of directions is to change the len
scale over which the nonlinear distortion occurs. Excepti
occur when one or more of the matrix elements is zero1 or
when one or more of the above inequalities is reversed.
latter case occurs nearu530° for KCl, NaCl, Si, and Ge~see
Sec. II B 2 for the effect on the waveforms in Si!. The matrix
elements tend to decrease in magnitude asu→30°; this trend
coincides with the increased depth penetration of the S
described in Sec. II A. In all cases, the magnitudesuSlmu are
periodic everyDu560° and symmetric aboutu530°.

The phasec lm of the matrix elementŜlm is defined such
that Ŝlm5uŜlmu exp (iclm). The bottom plot in each pai
shows the phasesc11 ~solid!, c12 ~long dashed!, and c13

~short dashed!. As will be shown in subsequent examples, t
primary effect of the phase of the matrix elements is
change the shapes of the various velocity waveform com
nents. Note that the nonlinearity matrix elements are alw
real-valued (c lm50 or c lm56p) at u530° because of the
crystalline symmetry in this direction. In contrast to the ma
nitudes, the phasesc lm are periodic everyDu5120° and
symmetric aboutu560°.

The nonlinearity matrix elements are functions of t
parametersl 3

(s) andCsa j
(s) of the linearized problem.2 For the

crystals shown~all in them3̄m point group!, the magnitudes
uSlmu, u l 3

(s)u, and uCsa j
(s)u have sixfold periodicity in the

plane, while the phasesuc lmu, arg@l3
(s)#, and arg@Csaj

(s)# have
only threefold periodicity. Thus the symmetry properties
the nonlinearity matrix elements are influenced by the sy
metry properties of these linear parameters.

2. Detailed study of silicon

Here we consider nonlinear SAWs in crystalline silic
and show some of the various types of waveform distort
which are possible. Figure 4~expanded from Fig. 3 with the
vertical scale of the phase changed top/2<c lm<3p/2)
shows the magnitude and phase of the three nonlinearity
trix elementsŜ11 ~solid!, Ŝ12 ~long dashed!, and Ŝ13 ~short
dashed!. While u50°, u530°, u560° are pure mode direc
tions, none is a ‘‘Rayleigh-type’’ mode.7 In the u50° and
u560° cases, while the displacement is confined to the s
ittal plane, the phase difference between the longitudinal
vertical components is not 90°. Hence the major axis of
initial surface displacement ellipse is not perpendicular to
surface. In theu530° case, the displacement is not confin
to the sagittal plane.

Figure 5 displays the velocity waveforms for the dire
tionsu50°, u530°, andu560° marked by small circles in
Fig. 4. These waveforms were calculated under the s
conditions as described in Ref. 1 and are selected to show
types and diversity of distortion in this cut. The colum
from left to right give the dimensionless longitudinal (Vx),
transverse (Vy), and vertical (Vz) components of the veloc
ity, respectively. In each direction, the waveforms are n
malized such that atX50 we haveuVxu21uVyu21uVzu251,
and hence the absolute magnitudes between direct
should not be compared. The velocity waveforms show
sults at locationsX5x/x050 ~short dashed!, X51 ~long
dashed!, and X52 ~solid!, where x05rc4/4uS11uvv0 is a
1296 J. Acoust. Soc. Am., Vol. 113, No. 3, March 2003 R. E. K
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characteristic length scale for nonlinear distortion~approxi-
mately equal to the shock formation distance, if shoc
form!1 andv0 is a characteristic velocity magnitude.

u50°: This direction provides the first example o
asymmetric distortion. While the velocity waveforms a
symmetric aboutvt50 at X50, the distortion is asymmet
ric at X51 andX52, unlike both nonlinear Rayleigh waves6

and nonlinear SAWs in the~001! plane.1 For example, a
nonlinear Rayleigh wave forms a cusped sawtooth wave w
a compression or rarefaction shock in theVx waveform and a
U-shaped wave with a cusped peak in theVz waveform.
However, in this direction theVx waveform distorts into a
U-shaped wave with an asymmetrically cusped peak, w
the Vz waveform distorts into a sawtoothlike wave wit
peaks advancing and troughs receding with respect to
retarded time frame. Measurements of finite-amplitu
SAWs atu50° in Si corroborate these results.3 The source
of these differences is the complex-valued nature of the n
linearity matrix elements. Because a full discussion of
relationship between the phase of the matrix elements
the resulting waveform distortion is given in Sec. III, furth
analysis of these waveforms is delayed until Sec. IV.

u530°: In this direction, the nonlinearity matrix ele
ments are all real-valued. As a result, the distortion

FIG. 4. Nonlinearity matrix elementsŜ11 , Ŝ12 , andŜ13 for Si in the ~111!
plane as a function of direction for 0°<u<60°. The circled directions are
discussed in detail in the text. Note that the vertical scale on the phase g
is changed top/2<c lm<3p/2 as compared to Fig. 3.
umon and M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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FIG. 5. Velocity waveforms in selected directions for propagation in the~111! plane of Si. The velocity components are normalized such that initial amplit
satisfiesuVxu21uVyu21uVzu251 in each propagation direction. The short dashed, long dashed, and solid lines correspond to propagation at distanX50,
X51, andX52, respectively.
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more similar to nonlinear SAWs in certain directions of t
~001! plane.1 BecauseuS11u is less thanuS12u and uS13u, en-
ergy is more efficiently transferred from the fundamental
third and higher harmonics than it is to the second harmo
As a result of the increased energy in the higher harmon
the velocity waveforms show sharp cusps. In addition,
matrix elements are negative (c lm5p), and so a rarefaction
shock forms in theVx waveform.

u560°: While the nonlinearity matrix elements in th
direction have the same magnitude as those foru50°, their
phases have the opposite sign. As a result, the wavefo
distort into entirely different shapes. TheVx waveform dis-
torts into an inverted U-shaped wave with an asymmetric
cusped trough, while theVz waveform distorts into an asym
metric sawtoothlike wave with peaks receding and trou
advancing. Because the nonlinear properties are periodic
ery Du5120°, propagation foru560° is the same as foru
5180°. Recently reported measurements8 have shown that
J. Acoust. Soc. Am., Vol. 113, No. 3, March 2003 R. E. Kumon a
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nonlinear propagation is different for@112̄# and@ 1̄1̄2# in the
~111! plane of crystalline silicon, and the differences in t
distortion are consistent with the results shown here.

3. Detailed study of potassium chloride

We consider here nonlinear SAWs in the~111! plane of
KCl. The magnitude and phase ofŜ11 ~solid!, Ŝ12 ~long
dashed!, and Ŝ13 ~short dashed! are shown in Fig. 6~ex-
panded from Fig. 3 for 0°<u<30° and with the vertical
scale of the phase changed to 0<c lm<3p/2). Like Si, the
nonlinearity matrix elements have the largest magnitude
u50°. Unlike Si, the phasesc lm change significantly from
u50° to 5°. Here again both theu50° andu530° directions
are pure mode directions, but neither is a ‘‘Rayleigh-typ
mode for the same reasons as in Si. One marked differe
with Si which occurs even at linear order is that the tra
verse linear amplitude factorsBy have phasesfy that are
1297nd M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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FIG. 6. Nonlinearity matrix elementsŜ11 , Ŝ12 , andŜ13 for KCl in the ~111!
plane as a function of direction for 0°<u<30°. The circled directions are
discussed in detail in the text. Note that the vertical scale on the phase g
is changed to 0<c lm<3p/2 as compared to Fig. 3.
1298 J. Acoust. Soc. Am., Vol. 113, No. 3, March 2003 R. E. K
closer top than to 0. This change alone results in transve
velocity waveforms that are significantly different.

Figures 7 and 8 display the velocity waveforms and h
monic propagation curves, respectively, for the directionu
50°, u520°, andu528° marked by small circles in Fig. 6
These directions are chosen because they have type
waveform distortion not shown in Fig. 5. Note that the ve
tical axis for all the waveforms is shifted as compared to F
5 such that 0<vt<2p. The harmonic propagation curve
show the spectral componentsV1 to V5 as a function of the
dimensionless propagation distance. Because the spe
amplitudes are complex-valued, the harmonic propaga
curves show both the magnitudes~left column! and phases
~right column! of the harmonics. Note that the phases sho
are relative to linear theory.

u50°: This direction shows a different type of asym
metric distortion than seen in Si. TheVx waveform forms an
asymmetrically cusped sawtoothlike wave with a rarefact
shock and with the negative cusped peak larger in magnit
than the positive cusped peak. TheVz waveform forms a
U-shaped wave with an asymmetrically cusped peak. T
harmonic magnitude curves in Fig. 8 are typical of nonline
SAWs in isotropic solids, and the harmonic phase cur
show relatively little variation during propagation.

u520°: Observe that the waveforms in this directio
distort very differently from those in theu50° direction.
The different shapes result because the dominant nonlin
ity matrix elements are clustered nearp/2, instead of nearp
like at u50° ~see Fig. 6!. Moreover, the phases ofc11, c12,
and c13 are more widely spaced atu520° than atu50°.
ph
f

de

nes
FIG. 7. Velocity waveforms in selected directions o
propagation in the~111! plane of KCl. The velocity
components are normalized such that initial amplitu
satisfiesuVxu21uVyu21uVzu251 in each propagation di-
rection. The short dashed, long dashed, and solid li
correspond to propagation at distancesX50, X51, and
X52, respectively.
umon and M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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This separation causes the oscillations near the shocks
peaks, as discussed further in Sec. IV. While these osc
tions are reminiscent of the kind seen in dispersive wave
should be emphasized that there is no dispersion in this
tem. In contrast to theu50° direction of KCl, Fig. 8 shows
that the magnitudes of the third, fourth, and fifth harmon
become comparable, while the phases are further sepa
and show larger variation as a function of distance excep
the fundamental frequency.

u528°: In this direction,uŜ11u is less thanuŜ12u and
uŜ13u, similar to theu530° direction in Si. Energy in the
fundamental is thus converted more rapidly to higher h
monics. As shown in Fig. 8, this results in a steeper dec
in the magnitude of the fundamental as compared to the
vious two directions in KCl, and eventual dominance by t
higher harmonics. However, unlike Si, here the phases of
nonlinearity elements are different. Figure 8 shows that
harmonic phases are irregularly spaced and some harmo
change their phase significantly as they propagate. The
result of these complicated interactions is the high-freque
oscillation seen in the waveforms of Fig. 6.

These simulations show that a wide variety of wavefo
distortion can occur in nonlinear SAWs in the~111! plane as
compared to nonlinear Rayleigh waves or nonlinear SAW
the ~001! plane. Features like asymmetric distortion a
high-frequency oscillations in the waveforms result from t

FIG. 8. Harmonic propagation curves for selected directions of propaga
in the ~111! plane of KCl. The spectral componentsV1 ~solid!, V2 ~long
dashed!, V3 , ~short dashed!, V4 ~dotted!, andV5 ~dot-dashed! are plotted as
a function of distance. The left column shows the spectral amplitudesuVnu,
while the right column shows the spectral phases argVn relative to linear
theory.
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harmonics having dissimilar phases, which in turn are rela
to the complex-valued nature of the matrix elements. T
next section further investigates the relationship between
nonlinearity matrix elements and waveform distortion.

III. COMPLEX-VALUED NONLINEARITY MATRIX
ELEMENTS AND WAVEFORM DISTORTION

Only the concepts of positive and negative nonlinear
are necessary to describe nonlinear SAWs in the~001!
plane.1 Examples of waves with a positive coefficient of no
linearity b include acoustic waves in fluids, longitudinal bu
waves in most isotropic solids, and SAWs in steel10 and the
direction 26° from^100& in Si.1 In these waves, the peaks o
the longitudinal velocity waveforms advance in a retard
time frame moving at the linear wave speed, while t
troughs recede. Examples of waves withb,0 include SAWs
in fused quartz11 and SAWs propagating in the directions 0
and 35° from^100& in the ~001! plane of Si.1 In these waves,
the peaks of the longitudinal velocity waveforms recede
the retarded time while the troughs advance. However,
situation is more complicated for the most general case
SAW in an anisotropic medium. As shown in Ref. 1, a
appropriate coefficient of nonlinearity for SAWs in a cryst
is

b54c44Ŝ11/rc2, ~5!

where the nonlinearity matrix elementŜ115uŜ11u exp (ic11)
cannot usually be written in real-valued form. The interp
tation of Eq. ~5! in terms of its effect on waveforms fo
situations other thanc1150 ~b real and positive! and c11

56p ~b real and negative! is not immediately obvious. The
purpose of this section is to suggest a way of thinking ab
this issue.

Ideally, one would like to be able to characterize t
type of waveform distortion by computing just a few param
eters, thereby avoiding the process of numerically integra
a system of nonlinear differential equations for every ma
rial, cut, and direction. As shown in Ref. 1, the nonlinear
matrix elements can serve as such parameters, allowin
reasonable estimate of the type of waveform distortion~or
lack thereof! to be determined from plots of the first few
elements. The ability to make the same type of estimat
desired here. The specific objective is to investigate in
simplified manner how the phase of the nonlinearity mat
affects the SAW solutions.

Towards this end, the matrix

Slm
c 5Slmeic sgnn ~6!

is introduced to represent a nonlinearity matrix construc
by applying a phase incrementc, independent ofl andm, to
a given matrixSlm . Given a solution for a material with
matrix Slm , it is desired to relate that solution to the on
obtained for a material with nonlinearity matrixSlm

c . It is
convenient, although not necessary, to consider the ma

n

1299nd M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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Slm to be real. The main simplifying assumption is that the
exist propagation directions in some materials for which
phase of the nonlinearity matrix is nonzero yet independ
of the indicesl andm. That Eq.~6! is a reasonable model o
the phase dependence in some cases, at least for the firs
matrix elements, is supported by Fig. 3. Specifically, o
observes thatc11.c12.c13 for all the materials shown~ex-
cept SrF2) at 0°,u,15° and 45°,u,60°. The purpose of
introducing sgnn in Eq. ~6! is that Slm

c must retain all the
symmetry properties required of the nonlinearity matrix.
particular, the nonlinearity matrix elements have the symm
try property2

Slm~2n!5S~2 l !~2m!n* , ~7!

wheren5 l 1m. The sgnn ensures that Eq.~6! satisfies Eq.
~7!.

For a nonlinearity matrixSlm
c , the evolution of nonlinear

SAWs is described by Eqs.~2!:

dvn
c

dx
5

n2v0

2rc4 (
l 1m5n

sgn~ lm!Slm~2n!
c v l

cvm
c , ~8!

where the notationvn
c designates that these spectral comp

nents are the solutions associated with the matrixSlm
c . Now

substitute Eq.~6! into Eq. ~8! and multiply both sides by
eic sgnn. Let

vn5vn
ceic sgnn, ~9!

and thus obtain

dvn

dx
5

n2v0

2rc4 (
l 1m5n

sgn~ lm!Slm~2n!v lvm . ~10!

The spectral componentsvn in Eq. ~10! are recognized as th
solutions for a material with nonlinearity matrixSlm . There-
fore, the solutionsvn

c for a material with nonlinearity matrix
Slm

c are related to the solutionsvn for a material with non-
linearity matrixSlm via Eq. ~9!:

vn
c5vne2 ic sgnn. ~11!

The surface velocity componentsv j
c in thexj direction for a

material with nonlinearity matrixSlm
c are reconstructed from

the spectral componentsvn
c using Eq.~3!:

v j
c~x,t!5(

n
vn

c~x!uBj ueif j sgnne2 inv0t. ~12!

For ease of notation, defineŜlm
c 52Slm

c /c44, following Eq.
~4!.

Consider an example of the above procedure to re
the phase of the nonlinearity matrix elements to the co
sponding type of waveform distortion. Take the well-know
waveform distortion for a nonlinear Rayleigh wave wi
positive nonlinearity coefficientb as a reference case, wit
spectrumvn

R , corresponding real-valued nonlinearity matr
elementsŜlm

R , and Bx
R5uBx

Rue2 ip/252 i uBx
Ru ~this conven-

tion for Bj is chosen to be consistent with theory for nonli
ear Rayleigh waves in isotropic solids6!. For simplicity, we
consider only the longitudinal velocity waveforms. The lo
gitudinal velocity waveform for the nonlinear Rayleigh wa
is given by
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vx
R~x,t!5(

n
vn

R~x!~2 i uBx
Rusgnn!e2 inv0t. ~13!

Now suppose there exists a hypothetical crystal with non
earity matrix elementsŜlm

c 5Ŝlm
R eic sgnn and linear amplitude

factorsBx5uBxue2 ip/252 i uBxu. By Eq. ~12!, the longitudi-
nal velocity waveform at the surface of the crystal is writt
in terms of the spectral components of the Rayleigh wave

vx
c~x,t!5(

n
vn

c~x!~2 i uBxusgnn!e2 inv0t, ~14!

or, from Eq.~11!,

vx
c~x,t!5

uBxu
uBx

Ru (n
vn

R~x!e2 ic sgnn~2 i uBx
Rusgnn!e2 inv0t.

~15!

Except for the factor ofe2 ic sgnn, the summation is the lon
gitudinal velocity component of the Rayleigh wave. Th
prefactoruBxu/uBx

Ru adjusts for possible amplitude difference
between the linear solutions of the Rayleigh wave and
SAW in the crystal. Thus, given the linear amplitude fac
Bx and the phasec of the nonlinearity matrix elements, th
waveforms at the surface in the idealized crystal may
computed by changing the phase of the spectral compon
of the nonlinear Rayleigh wave and reconstructing accord
to Eq. ~15!.

The expression in Eq.~15! is only an approximation to
the actual waveform. Discrepancies occur because the
linearity matrix elements rarely possess identical phase a
even if the phases of the elements are very similar, the m
nitudes of the elements may differ. Nevertheless, the ove
result can be qualitatively similar, especially in cases wh
the dominant matrix elements have nearly the same pha

To gain some intuition about the example transformat
vn

c5vne2 ic sgnn given in Eq.~15!, the dimensionless wave
forms

Vx
c~x,t!5

vx
c~x,t!

uvx
c~0,0!u

5(
n

vn
R~x!~2 i sgnn!e2 ic sgnne2 inv0t ~16!

are plotted in Fig. 9 for 0<c<p. ~An analogous figure12

can be constructed2p<c<0.) The Rayleigh waveforms
(c50) are calculated for steel. The third-order elastic co
stants for the simulations are taken from measurement
‘‘Steel 60 C2H2A’’ listed in the review by Zarembo an
Krasil’nikov,13 and they are the same as those used in sim
lations by Zabolotskaya6 and Shullet al.10 The simulations
were performed under conditions identical to the crys
simulations described in Ref. 1. Each plot contains the
mensionless longitudinal velocity waveformsVx

c(X) at loca-
tions X50 ~short dashed!, X51 ~long dashed!, and X52
~solid!.

Several observations can be made about this table
graphs. In the limiting cases ofc50 andc5p, the wave-
forms distort positively and negatively, respectively. Wh
umon and M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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various phase angles 0<c<p of the transformed non-

linearity matrix elementsŜlm
c 5Ŝlmeic sgn n, wheren5 l

1m. Each graph plots the dimensionless longitudin
velocity waveforms Vx

c(x,t)5vx
c(x,t)/uvx

c(0,0)u for
waveforms at distancesX50 ~short dashed!, X51
~long dashed!, X52 ~solid!.
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c5p/2, the waveform looks like the vertical velocity com
ponent of a negatively distorting Rayleigh wave. This sim
larity occurs because, from Eq.~11!,

vn
c5p/25vne2 i ~sgnn!p/25~2 i sgnn!vn , ~17!

where the coefficient2 i sgnn is recognized as a Hilber
transform expressed in the frequency domain.14 The appear-
ance of the Hilbert transform in Eq.~17! is not unexpected
because the longitudinal and vertical components of a R
leigh wave are related in precisely this way. The remain
plots show the expected waveform shapes for intermed
values ofc and, therefore, other cases of complex-valu
nonlinearity matrix elements.

This approximate approach is not limited to longitudin
velocity waveforms. If the phasesf j of the linear amplitude
factors Bj are known, then the corresponding approxim
waveform distortion in the vertical and transverse directio
can also be determined. Letc long5c lm be the phase of al
the matrix elements. In cases where the phases are not a
same, choose a representative element, typicallyc11. The
appropriate values ofc tran andcvert used to characterize th
transverse and vertical velocity waveforms are given by12

c tran5f12f21c long, ~18a!

cvert5f12f31c long. ~18b!

In other words, these are the phases that are appropria
use with Eq.~12! and Fig. 9 ~and its analog for2p<c
<0) to determine the approximate shape of the wavefo
distortion. Calculated phase values using Eqs.~18! for the
directions and crystals discussed in this paper are give
Ref. 12.
J. Acoust. Soc. Am., Vol. 113, No. 3, March 2003 R. E. Kumon a
-

y-
g
te
d

l

e
s

the

to

in

IV. COMPARISON OF APPROXIMATE AND FULL
SOLUTION METHODS

Figure 10 shows comparisons of the transformed so
tions based on nonlinear Rayleigh waves in steel and
solutions for the distortion of longitudinal waveforms in se
eral real crystals. The transformed solutions based on R
leigh waves are constructed via Eq.~12! in three steps. First
the linear amplitude factorBx and nonlinearity matrix ele-

ment Ŝ11 are computed for each crystal. Second, the tra
formation vn

c in Eq. ~11! is applied to the spectral compo
nentsvn

R of the nonlinear Rayleigh waves usingc11, and the
waveforms are translated so that all the sine waves at
source begin in the same place on the horizontal scale. Th
the resulting waveforms are scaled usinguBxu such that the
amplitude of the undistorted waveform atX50 is equal in
magnitude to the waveform in the corresponding crystal. T
left column gives the transformed Rayleigh wave solutio
while the right column gives the simulations using the f
theory ~reproduced from Figs. 5 and 7!. The rows present
comparisons for waveforms propagating in the directionu
50° for Si andu50°, u520°, andu528° for KCl.

The top two rows show cases for which the nonlinear

elementsŜ11, Ŝ12, and Ŝ13 have similar, but not the same
phase. Foru50° in Si the characteristic phase was chosen
c long5c11'0.59p ~see Fig. 4!. Thus for this case the wave
form is expected to be between the shapes given byc
5p/2 and c55p/8 in Fig. 9. Similarly, the characteristic
phase for u50° in KCl was chosen to bec long5c11

.1.17p ~see Fig. 6!. The transformed Rayleigh wave solu
tions reproduce the general shape of the distortion altho
not all the details. For example, in the Si waveform the sho
1301nd M. F. Hamilton: Harmonic phase effects in nonlinear SAWs
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is steeper than in the transformed waveform, and in the K
waveform the cusping before the shock does not appea
the transformed waveform. Nevertheless, the similarities
tween the waveforms are striking. In cases like these,
nonlinearity matrix elements and plots like Fig. 9 can
used to immediately characterize the nature of the wavef
distortion.

In contrast, the bottom two rows show several ca
where the phases of the nonlinearity matrix elements are
similar. At u520° in KCl, the characteristic phase for th
approximate method was chosen to bec long5c11.0.39p.
In this case, the approximately transformed waveforms
not reproduce the extra oscillations that result from the
phase differences introduced between harmonics during
harmonic generation process. However, the occurrence o
oscillations to the right of the cusped peak can be infer
from the relationc11,c12,c13. As higher harmonics form
their phase relative to the fundamental is increased. Ad
tional calculations of velocity waveforms in the~111! plane

FIG. 10. Comparison of transformed Rayleigh wave solutions~left column!
and simulations of nonlinear SAWs in the directionu50° for Si and the
directionsu50°, u520°, andu528° for KCl ~right column!. The top two
rows correspond to cases of nonlinearity matrix elements with similar ph
while the bottom two rows show cases where the matrix elements h
dissimilar phase.
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of Ni, where c11.c12.c13 ~see Fig. 3!, correspondingly
show that oscillations appear to the left of the peaks a
shocks in those waveforms.12 At u528° in KCl, the charac-
teristic phase for the transformed waveforms was chose
be c long5c11.0.47p. However, the approximate metho
does not reproduce the features seen in the full simulat

This is not unexpected because, as seen in Fig. 6,uŜ11u
,uŜ12u,uŜ13u, and thusŜ11 does not dominate the distortio
process. In addition,c11 differs significantly fromc12 and
c13 in this direction. Under these circumstances, the appro
mate method is not likely to reproduce all the salient featu
of the distortion. However, this determination can be ma
directly by examining a plot of the nonlinearity matrix ele
ments.

Finally, the methods and results described in this pa
are not limited to nonlinear SAWs in the~111! surface cut.
Additional studies of a variety of cubic crystals in the~110!
surface cut have been performed.12 While the waveform dis-
tortion in this cut is similar to that in the~001! plane for

crystals in them3̄m point symmetry group15 ~all the crystals

shown in this paper!, crystals in them3̄ point group show
distortion like in the~111! plane. Examples of crystals in th

m3̄ point group are the hydrous alumsXAl(SO4)2•12H2O,
whereX5Cs, K, and NH4. The use of complex-valued non
linearity matrix elements to characterize waveform distort
is also expected to be applicable to surface waves in ma
als with other crystalline symmetries besides cubic.

V. SUMMARY

This paper examines the propagation of nonlinear SA
in the ~111! surface cut for a variety of cubic crystals. Th
SAWs in this plane differ from those in the~001! surface cut
in that the nonlinearity matrix elements cannot usually
written in real-valued form. The nonlinearity matrix elemen
have sixfold symmetry in magnitude but only threefold sy
metry in phase. In most directions, initially sinusoidal wav
forms distort asymmetrically and, in some cases, the diss
lar phases of the nonlinearity matrix elements result
oscillations forming in the vicinity of the shocks and pea
of the velocity waveforms. Detailed analysis is provided f
Si and KCl. A simple mathematical transformation is intr
duced to provide a graphical interpretation of the phase
formation contained in the nonlinearity matrix elements a
linear amplitude factors. Comparisons are made betw
waveforms approximated by this method and those gener
with the full simulation. The agreement is shown to be b
when most of the nonlinearity matrix elements of the cryst
have the same or approximately the same phase. By
approach, plots of the nonlinearity matrix elements as a fu
tion of direction can be used to characterize the types
harmonic generation and waveform distortion in some dir
tions. The analysis provided here is applicable to other cr
tals and surface cuts as well, such as in the~110! surface cut

of cubic crystals in them3̄ point symmetry group.
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